

Overview

- AERSCREEN workgroup
- Description and Features
- Initial test results
- MAKEMET
- AERSCREEN stages
- Questions

AERSCREEN Finalization Workgroup

- Jim Haywood, Chair, Michigan DEQ
- Karen Wesson, EPA
- Roger Brode, EPA (formerly with MACTEC)
- James Thurman, EPA
- Bob Paine, ENSR
- Lloyd Schulman, TRC
- Acknowledge Herman Wong, EPA Region 10

AERSCREEN: Description

- AERSCREEN is a DOS tool that runs AERMOD in a "screening" mode for a single source
 - calls MAKEMET, BPIPPRM and AERMAP to generate necessary AERMOD inputs
 - Spring 2008, incorporates output from AERSURFACE but does not currently call AERSURFACE
 - SCREEN option added to AERMOD in 1995 forces model to calculate centerline concentration for each source/receptor/meteorology combination
 - Output limited to to 1-hour averages and NOCHKD selected option to eliminate date sequence checking

AERSCREEN Features

- Program developed by Jim Haywood, MI DEQ
 - Data entered via prompts or by input file
 - Source types: point, volume, rectangular area, circular area, and flare
 - Flat or complex terrain
 - AERSCREEN calls AERMAP for complex terrain processing
 - Terrain not used for rectangular area sources
 - PRIME building downwash
 - Specify stack location and direction relative to building center
 - Specify building dimensions (height, horizontal dimensions)
 - Direction of long building dimension from north
 - Not used for area or volume sources
 - AERSCREEN calls BPIPPRM
 - No deposition
 - MAKEMET meteorology
 - Specify min and max temperatures, minimum wind speed, anemometer height and surface characteristics
 - Internal matrices of other meteorological parameters

AERSCREEN Features

- User can specify
 - Probe distance for terrain processing
 - Default of 5 km for flat terrain (with or without building downwash) or rectangular area sources
 - Flagpole receptors
 - Elevation of source location for PROFBASE (even for flat terrain)
 - Elevation above sea level for potential temperature profile
 - Rural or urban (if urban, urban population)
 - Ambient air distance (fence line distance)
 - Source location in geographic or UTM coordinates
- Search routine to find worst case impact
 - RANKFILE output in AERMOD
 - Concentration, date, direction, distance, and meteorology

AERSCREEN Features

- Routine to find maximum concentration for automatic receptor distances
- Re-Use of Previous AERSCREEN Run Files
- Performs errors checks on AERMOD and AERMAP output and writes log file of AERSCREEN run
- Includes factors for 3-hour, 8-hour, 24-hour and annual averages – based on upper bound of SCREEN3 factors

```
- 3-hour: 1.0 (0.90 ±0.10)
```

- 8-hour: 0.9 (0.70 \pm 0.20)

-24-hour: 0.6 (0.40 \pm 0.20)

- Annual: $0.1 (0.08 \pm 0.02)$

Figure 1: AERSCREEN Averaging Period Ratios vs. Plume Height (line shows 95th-percentile and error bars show 90th and 98th percentiles)

AERSCREEN Tests

- Significant testing to date shows good results across wide range of applications
- "Good" defined as reasonable conservatism compared to AERMOD refined estimates

Database	Туре	No. of sources	Max. Ratio	Min. Ratio	Median Ratio
Jim Haywood	Miscellaneous	7	5.20	1.09	2.35
Karen Wesson	Stack downwash	32	2.54	0.96	1.17
Karen Wesson	Stack non-downwash	26	2.18	0.97	1.49
Roger Brode	Flat Terrain Non-downwash Rural & Urban	168	2.98	0.98	1.05
Roger Brode	Complex Terrain Varying Source/ Terrain Distance	168	4.56	0.96	1.18
Bob Paine	Complex Terrain	28	7.46	1.08	2.23

MAKEMET

- MAKEMET loops through several meteorological parameters:
 - Wind speed (stable and convective)
 - Cloud cover (stable and convective)
 - Max/min ambient temp (stable and convective)
 - Solar elevation angle (stable and convective)
 - Convective velocity scale (w*) (convective only)
 - Mechanical mixing heights (stable only)
- Uses AERMET subroutines to calculate u* and L, and also calculates convective mixing heights
- For AERSCREEN, uses wind direction of 270
- Generates surface and profile files for running AERMOD

Surface Characteristics and MAKEMET

- Three methods of surface characteristics into AERSCREEN
 - 1. User defined: annual, non-sector based
 - 2. Seasonal tables from AERMET User's Guide (Tables 4-1, 4-2, 4-3)
 - User specifies dominant land use type and moisture conditions
 - Water, deciduous forest, coniferous forest, swamp, cultivated land, grassland, urban, desert shrubland
 - Moisture for Bowen ratio: average, dry, or wet
 - Non-sector based
 - 3. AERSURFACE output
 - User enters AERSURFACE output filename or AERMET stage 3 input filename
 - Annual, seasonal, or monthly
 - 1 to 12 surface roughness sectors sectors
 - AERSURFACE is run for the source location.
- MAKEMET is run for each temporal, sector combination and met files generated for each combination

AERSCREEN Stages & Steps

Example input file

Validation page

```
Command Prompt - ..\AERSCREEN_ro_draft_08280.exe
                     AERSCREEN RODFT - beta release version
                              DATA ENTRY VALIDATION
                         METRIC
                                              ENGLISH
** STACK DATA **
                    100.0000 g/s
Emission Rate:
                                             793.651 lb/hr
Stack Height:
                        10.00 meters
                                               32.81 feet
                                               19.69 inches
80.3 Deg F
Stack Diameter:
                        0.500 meters
Stack Temperature:
                        300.0 K
Exit Velocity:
                      15.000 m/s
                                               49.21 ft/s
Stack Flow Rate:
Model Mode:
                         6240 ACFM
                        URBAN
Population:
                     2400000
Dist to Ambient Air:
                                30.0 meters
                                                         98. feet
Flagpole Receptor Height:
                                 1.0 meters
                                                          3. feet
** BUILDING DATA **
Building Height: 3
Max Building Dimension:
                         34.0 meters
                                               111.5 feet
                               120.0 meters
                                                       393.7 feet
Min Building Dimension:
                                60.0 meters
                                                       196.9 feet
Building Orientation: 90.0 degrees
Stack Direction: 26.6 degrees
Stack Distance:
                         67.0 feet
                                             219.8 meters
** TERRAIN DATA **
Source Longitude:
                    -78.78194 deg
                                            700197. Easting
Source Latitude:
                     35.89194 deg
                                           3974236. Northing
                    17
                                  Řeference Datum: 4
UTM Zone:
                                            416.0 feet
Source Base Elevation: 126.8 meters
                                         3281. feet
Probe distance:
                   1000. meters
** METEOROLOGY DATA **
Min/Max Temperature: 261.4 / 313.1 K 10.9 / 103.9 Deg F
Minimum Wind Speed:
                          1.5 \text{ m/s}
Anemometer Height:
                      10.000 meters
Using AERSURFACE output within aersurface_12.out
*** AERSCREEN Run is Ready to Begin - Choose Option to Proceed ***
                        - Change Source Data;
                        - Change Building Data;
                       3 - Change Terrain Data;
                           Change Meteorology Data;
                                 - or -
                       Hit (Enter) to Start Run
```

Summary of stages

PROBE

- 5 km default probe distance (25 m spacing) in one direction
- AERMOD executed for each temporal/spatial sector of SC

FLOWSECTOR

- Rectangular area sources
 - 5 km probe distance (25 m spacing) for 5 degree diagonals
 - AERMOD run for each SC temporal/spatial sector for each diagonal
- Other sources
 - Receptors every 10 degrees out to probe distance
 - Direction specific terrain and projected building dimensions used
 - AERMOD run for each SC temporal sector
 - Upwind spatial sector of direction being processed

REFINE

- Find overall maximum concentration from PROBE or FLOWSECTOR
- Use meteorology and SC associated with maximum concentration
- If terrain and/or downwash, use terrain heights and projected building dimensions of direction of maximum concentration
- Refine receptor spacing to 1, 2, or 5 m increments

*************** AERSCREEN MAXIMUM IMPACT SUMMARY ************

MAXIMUM
1-HOUR
CALCULATION CONC
PROCEDURE (ug/m3)

SCALED	SCALED	SCALED	SCALED
3-HOUR	8-HOUR	24-HOUR	ANNUAL
CONC	CONC	CONC	CONC
(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
0.3652E+05	0.3287E+05	0.2191E+05	3652.

DISTANCE FROM SOURCE 139.0 meters directed toward 180 degrees RECEPTOR HEIGHT -5.02 meters

0.3652E+05

IMPACT AT THE

ELEVATED TERRAIN

AMBIENT BOUNDARY 0.1552E+05 0.1552E+05 0.1397E+05 9310. 1552.

DISTANCE FROM SOURCE 30.0 meters directed toward 110 degrees RECEPTOR HEIGHT -5.88 meters

Future

- Draft release package:
 - AERSCREEN and MAKEMET executables
 - User can download BPIPPRM, AERMOD,
 AERMAP and AERSURFACE from SCRAM website
 - http://www.epa.gov/scram001
 - User documentation and example case